Friday, December 18, 2009
主动权 - 分析8
主动权有多重要?
胜利是需要计划的成功执行.
而计划的执行需要拥有主动权,
因为被动是无法执行想要的想法和计划.
而在合作的形式或是对敌的局面,
牵涉的个体都归类于主动和被动.
当然,没有一方希望处于被动,
这就造成了一种局面: 主动和被动的交替.
要怎样从被动变主动?
需要有条件.
条件可以是财势,军事,政治,外交,
甚至历史背景.
还有一个条件是可以被创造的:
创新.
纵观宽频和语音市场,
缺乏一个杀手铜: application.
这可以是任何形式的附加服务.
也可以是地理方式(graphically)的提供资讯.
只要拥有这类型的独特杀手铜,
就可以一次性地拿下整个市场.
Saturday, December 5, 2009
宽频之战 - 分析7
两大集团签署基建合约.
表面上看起来,他们有联盟的倾向.
而这一联盟,
各自可提升自身的实力,提高收入,和降低成本.
以我看来,
联盟需要有两大条件:
第一, 目标一致.
第二,利益一致.
两大集团的目标可说一致,
而且也致力于政府实现100%宽频的目标,以拥有先进国的条件.
而虽然两大集团也有共同的利益,
既是降低成本,
但也有绝对冲突.
市场的争夺即将会是利益上的绝对冲突.
因此,
这样的利益冲突存在着,
两大集团要保持长期合作是非常苦难.
这也是三国时的孙刘联盟,
和战国时的合纵抗秦的联盟,
无法成功长期维持的主要原因.
所以,我不看好这段联盟.
Saturday, November 14, 2009
宽频之战 - 分析6
据分析,
在2-3年内,
语音市场可达100%,也就是28million用户.
但宽频市场最多达10%,也就是2.8million潜在用户.
语音市场大大于宽频市场.
因此,
正常的策略应该是:
主攻语音,次攻宽频.
语音市场的主要对手技术成熟,价格低廉,
有"以逸待劳"之势.
而这正正这是迟进战场必须面对的劣势:技术和价格
而且,CPE也是个根本问题.
显然,这样主攻的战场并不讨好.
虽然宽频市场也有现有对手,
但技术和价格都没达到水准.
相比之下,
次攻战场似乎比较容易夺取.
我认为,
语音市场只能分割,
而宽频市场能独霸。
由此,
策略的制订和资源的分配也必须跟着这个方向进行。
Saturday, October 31, 2009
宽频之战-分析5
这是古人打战的基本条件.
而要打大战,就得准备非常充足的军粮.
诸葛亮连番北伐失败的主因就是粮食不足.
往往,急战是他北伐首要战略.
但司马懿施以针对性的策略,
坚持不出城.
这注定了诸葛亮的北伐失败。
以前的粮草就如同现代的资金.
计划太大但本身资本不足者,
就得靠急战来填补这个弱点,
“边建边售”就是其中一个急战的策略.
而且,这策略也有如司马懿的”屯田”策略的灵活.
可以快速地补充粮食,
也充分地显示了灵活的人力和食物周转.
虽然“边建边售”策略的优势在早期可明显看出,
但以长期战略的角度来看,
其仓促备战会使其失去了扩张的灵活能力。
所以,绝非最佳良策。
粮草若能有第三者输送,
那就可增加战术条件.
政府的24亿的免费”粮草”是必须正视的大优势.
再加上本身宣称89亿的资金,
其高速宽频计划(HSBB)可垄断好几个主要战略地方.
这样一来,绝对必须要有针对性的对策.
烧粮,劫粮,都是古人常用计谋.
“乌巢烧粮”就是官渡之战的转捩点。
那么,
此计谋该如何使用在现代?
什么时候可以使用?
怎样使用?
Friday, October 30, 2009
宽频之战-分析4
战略才能富有预见性.
这是大智慧的其一特性.
任何一个决策,考量都必须推前至3-5年.
也就是说,
必须预见和分析未来的趋向.
目前,
语音和宽频是属于不同类型的通讯服务,
前者是人与人的直接沟通,
后者是间接沟通,而且资料库大得惊人.
假使任何一方一旦能够同时结合起这两大通讯服务,
它在通讯业即势不可当.
这就是过去某强能够垄断多年的基本条件.
随着世界的变化,
人类对这两个服务要求了行动性.
这几年的确有了行动性的服务,
但都是只是提供单一服务.
因此,
任何一方能够同时提供拥有行动性的这两大服务,
而且拥有稳定性加上配套的价格.
就能长期性地占据龙头的位子,
而非短期性的胜利.
这,
就是高瞻远瞩的战略方向.
Thursday, October 29, 2009
宽频之战-分析3
强和弱是相对的.
你的强,是因为相对起来你的对手较弱.
而你的弱,是因为相对起来你的对手较强.
而强和弱是可以交替的.
历史哪有永远的强势和永远的弱势?
但,由弱变强需要有条件。
要变强,至少得做两件事:
1.辨认出条件。
2.创造这些条件。
辨认条件需要了解大势,了解敌我.
而创造条件则需要能够执行任务的队伍.
"覆盖范围"这个条件只是时间问题,
最终,各强都能达到最基本的覆盖范围,
没有相对性.
因此,长期来说,这不会是条件.
"CPE体积"是科技问题,
各强随着全球性的科技而大同小异.
因此也不会是条件.
2大强弱条件也就浮出水面:速度和价格.
这2大条件肯定有相对性,而且相当大,
至少是前者.
这下条件辨认了,就得创造条件.
要实现稳定和超强的速度,
就需要已经达到这个程度的人来执行.
纵观世界,只有少数的国家有这样的人才.
这下,我就可列出了2可和1不可.
可引进了有经验和获得公认技术的外援,
可有雄厚的资本(粮草),
不可实行会影响创造条件的策略,比方说”边建边售”.
然后,就完全有能力创造速度和价格的优势条件.
的确,这预见性的战略战术被采取了.
而且,完全符合了我叙述的强弱变化所需要的条件.
Monday, October 26, 2009
神来之笔
多数人会对此啧啧称奇,
但有一个人或许没有。
我估计,
这事报告到东尼耳边,
第一反应是大喜,
心生一计,
立即下令颁发终生免费乘坐飞机给制造这奇事的夫妻。
借力还力。
借由有新闻价值的事来创造另一个新闻。
也可以解释为善于利用天赐良机。
得民心者得天下,
但由此得法简直是神来之笔。
Saturday, October 24, 2009
宽频之战-分析2
边建边售里头又隐藏着什么意义?
谁又适合使用这一策略?
其方法就如同经济饭的售卖.
有两种手法.
第一种是层次性或阶段性售卖.
也就是说,
小贩在准备食物的当儿会把那些已经准备好的端出去售卖先.
第二种是统一性售卖.
或者说,
小贩只在已经完全好所有菜色之后才全面给人购买.
第一种手法的好处:
第一,小贩能在准备的时候拿回一些资金,
然后第一时间再拿着刚赚得资金去巴刹买菜.
由此发挥了灵活的资金周转,
立即有能力菜色升级.
而能越做越大.
第二,小贩先发制人,
抢在别人之前售卖食物.
而那些买了的食客当然不会去光顾其他地方,直到下一餐.
第三,小贩能看清市场,
然后再决定接下来需不需要增加食物,还是就此逃之夭夭.
这是谨慎之举,
也就间接避免了showhand的可能性.
就如同全部基建完工才开始售但反应糟糕,
而那时又资金不足而无法制造宣传,
那岂有翻身之地?
如此看来,
这是为资金不足的企业的量身定做,
是个稳打稳扎的良策,
也是个抢得先机的途径.
那,
有弊处吗?
Wednesday, October 21, 2009
宽频之战-分析1
养马必须在夜里给马宵夜,才能把马养肥.
财政预算的出炉.
正如之前所言,
政策和企策的关键性.
政策这一宵夜,
把宽频战场推向最高峰.
正如我之前所说的"水涨船高"效应.
这个领域,将百花齐放.
纵观天下局势,
有者久处战场,
并小幅度地瓜分了一席之位,.
但由于3G技术的限制,
已经是强弩之弓.
除非天下有变,
否则难有突破。
有者曾经只手遮天,
但不稳定的速度和糟糕的服务促成增长率跌半,
节节败退.
但由于右背山陵,
也就是所谓的"后山"强大,
正着手于超大资本高成本的高速计划.
时间瞄准在2010年3月,一直到2012年.
能否稳住龙头,就看这一役.
当中,其速度是无需置疑,
但价格将是其胜败关键.
有者使用"先发制人"之策,
造势成功,
的确也成功短时间占到一席之位.
但由于"边建边售"和资本不够雄厚,
再加上其对手用户合约,
和覆盖范围的不足,
无法即时乘势抢头位.
有者"明修栈道,暗渡陈昌".
这个不好说.
各路人马的策略不同,
加入战围的时间不同,
资金后山的能力不同,
造就了当今乱世局势.
但以我看来,
最终能雄霸天下有两大关键,
1.速度
2.价格
低速度高价格,大败.
低速度低价格,小败.
高速度高价格,属中.
高速度低价格,大胜.
然而,接下来的胜负关键还包括,
3.覆盖范围
4.CPE的体积.
假使前4大点都不分上下,
最后的胜负在于后面的4小点:
5.多元化的配套
6.售卖处的多寡
7.联盟的合作
8.宣传的力量
由此,策略蓝本立即变得清晰.
或许我的个人观点和真实情况有别,
因为分析范围只依赖着公开的资讯。
但我意料2010和2011年将出现史无前例的削价战和宣传热潮.
而2011或2012年会明显地出现三强鼎立.
Tuesday, October 20, 2009
如何立不败之地
有些国家先有内需,然后再建立强势出口力量.
一旦成功,这些国家的企业可能出现两种方针:
第一种可能:
内需和出口双翼齐飞.
第二种可能:
主打出口,次打内需.
两方将影响其方针: 国家的政策和企业的领导者.
有些国家则跳过了培养内需,而直取出口策略,
就因为产品出口能力强.
这样一来,各国策略有别.
出口强国在经济蓬勃时水涨船高.
但一旦出现变化,世界大国版图将马上有所变化.
崛起中的国家得到了反超的机会.
如同诸葛亮欲实现刘备三分天下的首要条件:天下有变.
天下有变而其基强之,不败.
地震风暴一来,再堂皇但地基不稳的屋子将摇摇欲坠.
内需基础强而稳,
就如地基强的屋子一样.
因此,
国策和企策,都必须考虑到地基和屋子的比重.
才能在"天下有变"而立不败之地,
Thursday, October 15, 2009
水涨船高
各行各业也就欣欣向荣.
全球股市进入牛市阶段的时候,
好股坏股齐齐飞腾.
就如海水涨潮的时候,
水面上的船只都高大了起来.
这就是所谓的水涨船高.
明白了这个观点,
也许,
预测的准确性和策略的有效性会大幅度的提高.
Tuesday, October 13, 2009
兵马未动,粮草先行.
在带兵打仗之前,粮草必须先准备和运行.
古人的粮草,就如我们现代人的生意资本.
资本先筹集,事情就容易得多了.
当资本不够别家雄厚但又不得不打这场仗的时候,
就必须出奇招.
比方说,
先声夺人,抢在人家之前先拔头筹.
又比如说,
虚张声势,
就如曹操在赤壁之战前宣称80万兵,实质上只有30万.
但是,虚里必须带实.
这样才能实实虚虚,以假带真.
在制造虚像的同时,必须捉紧时机巩固真实能力.
总不能从头到尾只在呈现虚像.
把太多精力花费在制造虚像,
就失去金钱和时间来加强实力.
把太多资金耗尽在宣传上,
就失去金钱和时间来加强产品实力.
不是说不必宣传,
这里强调的是适量,
不是过量.
过量的确能制造铺天盖地的感觉,
但之后虚弱必然浮现于地面,
而且如果拿捏错误必然元气大伤.
那么,对手一反击,
是否兵败如山?
游戏怎样玩?
对我而言,
该看的是趋向,
不是看现状,
不看现状,因为现在好的必贵.
看趋向,因为价廉物美.
什么是时候退场?
多数人都自行想象一个数字.
然后逃之夭夭.
以我肤浅的思想,
或许该看的是时机,
才择日抽身而退.
时机,从四个方位可看出一二:
市场需求,竞争对手,国家经济,世界经济.
换句话说,
也就是从微观,中观到宏观.
假使全部乐观,
可以倾城而出.
趋势,可从三个时间点来看.
过去,现在,未来.
也就是说,
细读过去,了解现在,预测未来.
预测,只有在全面了解之后才能准确.
进与退拿捏准确,
无往不利,
行云如水.
商业生意,房产,
亦如此.
胜败
美国是现任大国,
中国是崛起大国,
西藏是宁静高原.
表面上看来是一个超级巨星,一个后起之秀,一个与世无争.
实际上有着微妙的关系.
美国需要西藏来牵制中国,在其大后方制造某些程度的困难.
西藏需要美国来实现原本属于它的安定.
中国需要美国的强势来巩固它的外储金.
往往,
两强鼎立的时候,
原本虚弱的第三方,
或多或少将左右胜败成果.
Monday, September 7, 2009
中国怎样变成强国?
1. 企图加强中国货币的地位,
2. 企图增加其他地方的资源的拥有权,
3. 把自家的企业摆在世界各国里,
等等. 在加上人口和土地的优势, 中国有点来势汹汹,铺天盖地而来的感觉.
现在已不在是几百年前的世界,
不在是侵略方针就可以变成强国.
葡萄牙,英国等国说使用的先侵略,后经济的方式已经过时了.
货币的强势,贸易的掌控,资源的拥有,市场的庞大, 才是现代攻略.
以我看来,中国完全到点, 方向正确.
我看见了, 没理由美国人看不见.
我估计, 美国现在必然正在反攻.
很可惜, 美国自己大后方大乱, 自救都来不及.
这就是,法正对曹操突然撤退的猜测所说的: 内有忧逼.
这个时代, 经济冠军, 才能称霸.
策略, 时机都齐到.
我说,下一个强国, 非你莫属.
Monday, August 17, 2009
Wednesday, July 8, 2009
Brief introduction of OFDM
In communication channels, frequency selective fading occurs when channel introduces time dispersion and the delay spread is larger than the symbol duration. The delay spread is the time spread between the arrival of the first and last multipath signal received at the receiving end. As a result, it will lead to intersymbol interference (ISI), where a received symbol can be influenced by previous symbol. With high data rate, the symbol duration can be very small. Therefore, the number of symbols that are affected by ISI can be large. In general, when the delay spread is less than the symbol length, the channel is flat fading. On the other hand, when the delay spread is much larger than the symbol length, the channel is frequency selective fading.
In fact, frequency selective fading is difficult to be compensated because the fading charateristics is random and not predictable due to the ever-changing environments. Due to this reason, multicarrer modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) and discrete multitone (DMT) modulation have become popular for high-speed wireline and wireless communication systems due to its robustness against frequency selective channels. The concept of MCM is to partition a broadband channel into a large number of narrowband subcahnnels, thus converting a frequency-selective channel into a collection of frequency-flat channels. In other words, we generate closely-spaced orthogonal subcarriers which are used to carry data, where the data is divided into several parallel data streams or channels, one for each subcarriers. Each subcarrier is modulated with a conventional modulation scheme, such as quadrature amplitude modulation (QAM), at a low symbol rate, thus maintaining total data rates similar to conventional single-carrier modulation schemes in the same bandwidth.
As such, the transmission can achieve a high data rate while maintaining long symbol duration which reduces the effects of ISI. Reducing the effects of ISI yields a simple equalization. The equalization is performed in each subchannel by scaling back the received signal by an appropriate factor. Therefore, we can have a simple receiver structure. The implementations of MCM make use of an inverse fast Fourier transform (IFFT) for the modulation and a fast Fourier transform (FFT) for the demodulation to create orthogonal subchannels. After the information bits are grouped, coded and modulated, they are segmented by the serial-to-parallel converter before being fed into N-point IFFT to obtain the time domain OFDM symbols.
At the receiver, after passing through the analog-to-digital (A/D) and removing CP, the signals are converted from serial to parallel. Then N-point FFT is used to transform the data back to frequency domain. Finally, the information bits are obtained through the channel equalization and demodulation process.
Saturday, May 9, 2009
What is MIMO?
1. Precoding is multi-layer beanforming in a narrow sense or all spatial processing at the transmitter in a wide-sense. In (single-layer) beamforming, the same signal is emitted from each of the transmit antennas with appropriate phase (and sometimes gain) weighting such that the signal power is maximized at the receiver input. The benefits of beamforming are to increase the signal gain from constructive combining and to reduce the multipath fading effect. In the absence of scattering, beamforming results in a well defined directional pattern, but in typical cellular conventional beams are not a good analogy. When the receiver has multiple antennas, the transmit beamforming cannot simultaneously maximize the signal level at all of the receive antenna and precoding is used. Note that precoding requires knowledge of the channel state information (CSI) at the transmitter.
2. Spatial multiplexing requires MIMO antenna configuration. In spatial multiplexing, a high rate signal is split into multiple lower rate streams and each stream is transmitted from a different transmit antenna in the same frequency channel. If these signals arrive at the receiver antenna array with sufficiently different spatial signatures, the receiver can separate these streams, creating parallel channels for free. Spatial multiplexing is a very powerful technique for increasing channel capacity at higher Signal to Noise Ratio (SNR). The maximum number of spatial streams is limited by the lesser in the number of antennas at the transmitter or receiver. Spatial multiplexing can be used with or without transmit channel knowledge.
3. Diversity Coding techniques are used when there is no channel knowledge at the transmitter. In diversity methods a single stream (unlike multiple streams in spatial multiplexing) is transmitted, but the signal is coded using techniques called space-time coding (STC). The signal is emitted from each of the transmit antennas using certain principles of full or near orthogonal coding. Diversity exploits the independent fading in the multiple antenna links to enhance signal diversity. Because there is no channel knowledge, there is no beamforming or array gain from diversity coding.
Tuesday, April 7, 2009
政府宏观调控的三种组合
1. 手段组合
(a) 经济手段
(b) 法律手段
(c) 行政手段
2. 政策组合
(a) 货币信贷政策
(b) 财政税收政策
(c) 土地政策
(d) 产业政策
(e) 外汇政策
3. 工具组合
(a) 利率
(b) 存款准备金率
(Quoted from Sinchew)
Thursday, March 12, 2009
Performance studies of time-domain equalizers over medium-voltage power-line communications
Power-line communication (PLC) technology uses the existing power cable infrastructure for communication purposes [1]. This technology does not involve any installation costs due to the readily availability of power-line grids. The electric power lines are classified into the high (larger than 100 kV), medium (1-100 kV) and low (smaller than 1 kV) voltage networks. High-voltage lines are usually not used for data transmission due to the excessive noise. Medium-voltage lines are routed from the substations to the neighborhood transformers, and can be used to form the backbone of data over power-line infrastructure. Low-voltage lines are routed from the neighborhood transformers to homes.
Orthogonal frequency division multiplexing (OFDM) modulation has been proposed as the modulation scheme for PLC networks due to its many desirable features [1]. However, if the length of the channel impulse response L is longer than that of the cyclic prefix (CP), inter-symbol interference (ISI) will arise. One of the possible solutions to combat ISI in PLC networks is to use a channel shortener, which is commonly known as time-domain equalizer (TEQ), at the receiving end to shorten the channel. A number of the TEQ methods [2-4] have been proposed for digital subscriber loop (DSL) systems. However, no thorough study on the implementation of TEQs over medium-voltage power-line communication (MV-PLC) networks has been reported yet. This under-reported area urges a motivation to investigate the potential performance improvements with a TEQ incorporated in MV-PLC networks. Different from the DSL channels, the increase of the number of branches along the transmission path increases the L [5], thus giving rise to strong ISI in the MV-PLC channels. In addition, the MV-PLC channels are worsen and afflicted with colored background noise, narrowband interference and impulsive noise, and thus exhibit remarkable differences from the DSL channels. Therefore, the aim of our study is to make the performance assessments on three major TEQ methods in such a hostile medium, and to provide the insights on the deployment of TEQs in MV-PLC networks.
1. S. Galli and O. Logvinov, “Recent developments in the standardization of power line communications within the IEEE,” IEEE Communications Magazine, vol. 46, no. 7, pp. 64-71, July, 2008.
2. N. Al-Dhahir and J. M. Cioffi, “Efficiently computed reduced-parameter input-aided MMSE equalizers for ML detection: A unified approach,” IEEE Trans. Inform. Theory, vol. 42, pp. 903-915, May, 1996.
3. P. J. W. Melsa, R. C. Younce, and C. E. Rohrs, “Impulse response shortening for discrete multitone transceivers,” IEEE Trans. Commun., vol. 44, pp.1662-1672, December, 1996.
4. G. Arslan, B. L. Evans, and S. Kiaei, “Equalization for discrete multitone receivers to maximize bit rate,” IEEE Trans. Signal Processing, vol. 49, pp. 3123-3135, December, 2001.5. J. Anatory, 5. N. Theethayi, M. M. Kissaka, N. H. Mvungi, and R. Thottappillil, “The effects of load impedance, line length, and branches in the BPLC-transmission-lines analysis for medium-voltage channel,” IEEE Transactions on Power Delivery, vol. 22, no. 4, pp. 2156-2162, October, 2007.
(From my paper.)
Tuesday, February 17, 2009
Time-domain equalizer
However, a spectrally shaped channel destroys the orthogonality between subchannels, giving rise to inter-carrier interference (ICI) as well as inter-symbol interference (ISI) which degrades the system performance. One way to prevent ICI/ISI is to append a cyclic prefix (CP) to each symbol block. In particular, ISI is eliminated when Nb ≥ L – 1 where Nb and L denote the length of the CP and channel impulse response, respectively. For channels where Nb < L – 1, a channel shortener, commonly known as a time-domain equalizer (TEQ) [3], [4], [5], [6], [7] can be placed at the receiving end to shorten the channel. Therefore, a TEQ is useful for mitigating ISI and improving system performance.
References
[1] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 28, no. 5, pp. 5-14, May 1990.
[2] Z. Wang and G.B. Giannakis, “Wireless multicarrier communications,” IEEE Signal Processing Mag., vol. 17, pp. 29–48, May 2000.
[3] N. Al-Dhahir and J. M. Cioffi, “Efficiently computed reduced-parameter input-aided MMSE equalizers for ML detection: A unified approach,” IEEE Trans. Inform. Theory, vol. 42, pp. 903-915, May 1996.
[4] P. J. W. Melsa, R. C. Younce, and C. E. Rohrs, “Impulse response shortening for discrete multitone transceivers,” IEEE Trans. Commun., vol. 44, pp.1662-1672, Dec. 1996.
[5] G. Arslan, B. L. Evans, and S. Kiaei, “Equalization for discrete multitone receivers to maximize bit rate,” IEEE Trans. Signal Processing, vol. 49, pp. 3123-3135, Dec. 2001.
[6] B. Farhang-Boroujeny and M. Ding, “Design methods for time-domain equalizer in DMT transceivers,” IEEE Trans. Communications, vol. 49, no. 3, pp. 554–562, 2001.R. K. Martin, J. Balakrishnan,W. A. Sethares, and C. R. Johnson Jr., “A blind, adaptive TEQ for multicarrier systems,” IEEE Signal Processing Letters, vol. 9, no. 11, pp. 341-343, 2002.
[7] R. K. Martin, J. Balakrishnan,W. A. Sethares, and C. R. Johnson Jr., “A blind, adaptive TEQ for multicarrier systems,” IEEE Signal Processing Letters, vol. 9, no. 11, pp. 341-343, 2002.
(From my paper.)
Saturday, January 24, 2009
Wimax Network Architecture
The network reference model envisions a unified network architecture for supporting fixed, nomadic, and mobile deployments and is based on an IP service model. The overall network architecture may be divided into three parts:
- Mobile Stations (MS) used by the end user to access the network.
- The access service network (ASN), which comprises one or more base stations and one or more ASN gateways that form the radio access network at the edge.
- Connectivity service network (CSN), which provides IP connectivity and all the IP core network functions.
The functions:
- Base station (BS): The BS is responsible for providing the air interface to the MS. Additional functions that may be part of the BS are micromobility management functions, such as handoff triggering and tunnel establishment, radio resource management, QoS policy enforcement, traffic classification, DHCP (Dynamic Host Control Protocol) proxy, key management, session management, and multicast group management.
- Access service network gateway (ASN-GW): The ASN gateway typically acts as a layer 2 traffic aggregation point within an ASN. Additional functions that may be part of the ASN gateway include intra-ASN location management and paging, radio resource management and admission control, caching of subscriber profiles and encryption keys, AAA client functionality, establishment and management of mobility tunnel with base stations, QoS and policy enforcement, foreign agent functionality for mobile IP, and routing to the selected CSN.
- Connectivity service network (CSN): The CSN provides connectivity to the Internet, ASP, other public networks, and corporate networks. The CSN is owned by the NSP and includes AAA servers that support authentication for the devices, users, and specific services. The CSN also provides per user policy management of QoS and security. The CSN is also responsible for IP address management, support for roaming between different NSPs, location management between ASNs, and mobility and roaming between ASNs.
(Modified from wikipedia.)